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We describe the use of surface x-ray diffraction (SXRD) for real-time monitoring of oxide thin-film 
growth during pulsed laser deposition and testing of models that rely on different time scales.  The use 
of SXRD ensures that simple kinematic single scattering analysis can be used to provide direct physical 
insight into the details of aggregation, crystallization, and surface kinetics involved in the epitaxial
growth process.

The experiments were performed on the UNICAT undulator beamline using a monochromatic 10 keV
x-ray beam.  Discrete measurements of the diffracted intensity at the (001/2) anti-Bragg position on the 
specular crystal truncation rod were made at 5ms intervals during the pulsed laser deposition of 
homoepitaxial SrTiO3.  The data suggest that two time scales are present.  A simple rate model is unable 
to explain the abrupt and consistent increase in scattered intensity after half coverage.  The early time 
scale is characterized by a very fast motion which appears prompt in our measurements.  We propose 
the concept of “prompt” motion  where some the hot material that lands immediately following the 
deposition pulse moves down to a lower level, followed by slower more conventional motion thereafter.
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Simple Model Used for Slow Decay

Solution to diff. eq. Boundary condition

θ2

θ1
θ0

Where: is the area of holes

Rate ~ (material on level 2) x (area of holes in bottom)

′ θ 2 = −
θ2(t)θ0(t)

τ

b + θ2(t) = θ0(t)
b =1− θ2(t) + θ1(t)[ ]=1−θtotal

θ2(t) =
bebC

e
bt

τ − ebC C =

ln
θ2 t = 0( )
b+ θ2 t = 0( )
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Prompt Fraction and τ
Prompt fraction ~ 1 for <0.5 Coverage
Prompt fraction <0.5 as coverage ->1
τ =0.25 sec
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Summary
• Prompt and slow intensity transients modeled
• Prompt interlayer transfer fraction, fp

~ 1 for low θ, 
~ 1/2 for θ approaching 1

• τ ~0.2-.4 s for 10 sec laser dwell-time
• Slowing of intensity transients results from 

decreasing hole density
• Random walk precludes complete layer 

filling

In PLD, the affects of arriving 
material can be separated in time 
from evolving material
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